Bootstrap Testing of the Rank of a Matrix via Least Squared Constrained Estimation
نویسندگان
چکیده
In order to test if an unknown matrix has a given rank (null hypothesis), we consider the family of statistics that are minimum squared distances between an estimator and the manifold of fixed-rank matrix. Under the null hypothesis, every statistic of this family converges to a weighted chi-squared distribution. In this paper, we introduce the constrained bootstrap to build bootstrap estimate of the law under the null hypothesis of such statistics. As a result, the constrained bootstrap is employed to estimate the quantile for testing the rank. We provide the consistency of the procedure and the simulations shed light one the accuracy of the constrained bootstrap with respect to the traditional asymptotic comparison. More generally, the results are extended to test if an unknown parameter belongs to a sub-manifold locally smooth. Finally, the constrained bootstrap is easy to compute, it handles a large family of tests and it works under mild assumptions.
منابع مشابه
Bootstrap-Based Regularization for Low-Rank Matrix Estimation
We develop a flexible framework for low-rank matrix estimation that allows us to transform noise models into regularization schemes via a simple bootstrap algorithm. Effectively, our procedure seeks an autoencoding basis for the observed matrix that is stable with respect to the specified noise model; we call the resulting procedure a stable autoencoder. In the simplest case, with an isotropic ...
متن کاملSuperlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملEstimation in Simple Step-Stress Model for the Marshall-Olkin Generalized Exponential Distribution under Type-I Censoring
This paper considers the simple step-stress model from the Marshall-Olkin generalized exponential distribution when there is time constraint on the duration of the experiment. The maximum likelihood equations for estimating the parameters assuming a cumulative exposure model with lifetimes as the distributed Marshall Olkin generalized exponential are derived. The likelihood equations do not lea...
متن کاملAdaptive Reduced-Rank LCMV Beamforming Algorithms Based on Joint Iterative Optimization of Filters: Design and Analysis
This paper presents reduced-rank linearly constrained minimum variance (LCMV) beamforming algorithms based on joint iterative optimization of filters. The proposed reduced-rank scheme is based on a constrained joint iterative optimization of filters according to the minimum variance criterion. The proposed optimization procedure adjusts the parameters of a projection matrix and an adaptive redu...
متن کاملNon-Bayesian Estimation and Prediction under Weibull Interval Censored Data
In this paper, a one-sample point predictor of the random variable X is studied. X is the occurrence of an event in any successive visits $L_i$ and $R_i$ :i=1,2…,n (interval censoring). Our proposed method is based on finding the expected value of the conditional distribution of X given $L_i$ and $R_i$ (i=1,2…,n). To make the desired prediction, our approach is on the basis of approximating the...
متن کامل